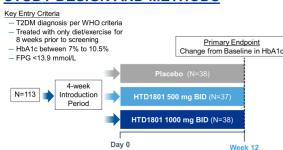
Berberine Ursodeoxycholate (HTD1801) Improves Glycemic Control in Patients with Type 2 Diabetes: Double-Blind, Placebo-Controlled, Phase 2 Study

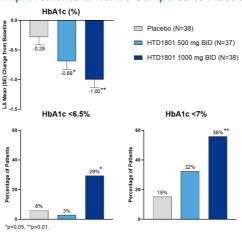

<u>Linong Ji</u>¹, Jianhua Ma², Jinyu Ma³, Zhifeng Cheng⁴, Shenglian Gan⁵, Guoyue Yuan⁶, Dexue Liu⁷, Sheli Li⁸, Yu Liu⁹, Xia Xue¹⁰, Jie Bai¹¹, Kun Wang¹², Hanging Cai¹³, Shu Li¹⁴, Liping Liu¹⁵

BACKGROUND

- Berberine ursodeoxycholate (HTD1801), is a first-in-class gut-liver anti-inflammatory metabolic modulator which targets multiple pathways pivotal to metabolic regulation
- In patients with obesity and hypercholesteremia HTD1801 treatment for 28 days resulted in reductions in triglycerides and non-high-density lipoprotein cholesterol (non-HDL-C)¹
- In patients with metabolic dysfunction-associated steatohepatitis (previously known as nonalcoholic steatohepatitis) HTD1801 treatment for 18 weeks resulted in significant decreases in liver fat content along with significant reductions in HbA1c and weight²
- Based on these findings, a Phase 2, double-blind, placebocontrolled study evaluating the efficacy and safety of HTD1801 was conducted in Chinese patients with type 2 diabetes mellitus (T2DM) with the primary objective of improving glycemic control

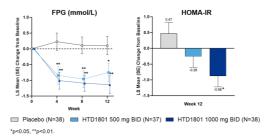
STUDY DESIGN AND METHODS

- Conducted at 14 sites in China
- Patients were randomized 1:1:1 to each of the treatment groups
- Randomization stratification included HbA1c (above/below 8.5%) and controlled attenuation parameter ([CAP] above/below 274 dB/m)
- LS Means are derived from a mixed-effects model for repeated measures with:
- Dependent variable: measured value or change from baseline
- Independent variables: treatment group, measurement time point, and interaction between treatment group and measurement time point
- Covariates: randomized stratification factors and subject baseline measurements
- For dichotomous endpoints, a CMH model was used and the randomization stratification factor was CAP

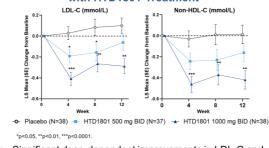

RESULTS

Demographics and Baseline Characteristics

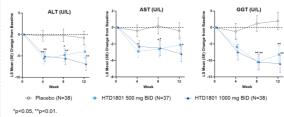
	Placebo (N=38)	HTD1801 500 mg BID (N=37)	HTD1801 1000 mg BID (N=38)
Age, y	52.45 (11.25)	54.86 (10.09)	55.57 (10.47)
Males, n (%)	27 (71.1)	19 (51.4)	26 (68.4)
Han, n (%)	36 (94.7)	36 (97.3)	38 (100.0)
Weight, kg	69.88 (12.37)	66.08 (9.84)	69.97 (11.49)
BMI, kg/m ²	25.49 (3.78)	25.25 (3.92)	25.80 (3.38)
Diabetes duration, y	2.13 (1.96)	2.20 (1.94)	3.08 (2.56)
CAP, dB/m	270.7 (57.98)	268.9 (50.59)	260.5 (59.30)
HbA1c, %	8.32 (0.89)	8.18 (0.73)	8.18 (0.82)
FPG, mmol/L	9.19 (2.24)	8.70 (2.31)	8.87 (1.84)
Fasting insulin, pmol/L	72.33 (58.71)	64.55 (33.88)	62.87 (28.87)
Non-HDL-C, mmol/L	3.57 (0.86)	3.50 (0.90)	3.71 (0.93)
LDL-C, mmol/L	3.08 (0.77)	3.03 (0.73)	3.15 (0.75)
Triglycerides, mmol/L	2.14 (0.92)	2.07 (1.29)	2.17 (1.28)


BMI: body mass index; FPG: fasting plasma glucose; LDL-C: low density lipoprotein cholesterol; Values are Mean (SD) unless otherwise noted.

Treatment with HTD1801 Resulted in Significant Improvements in HbA1c Compared to Placebo


- The primary endpoint was achieved with significant dosedependent reductions in HbA1c after 12 weeks of treatment with HTD1801 compared to placebo
 - Baseline HbA1c levels were 8.3%, 8.2%, and 8.2% for placebo, HTD1801 500 mg BID and 1000 mg BID, respectively; Week 12 levels were 8.0%, 7.2%, and 6.8%
- At Week 12, 56% of patients treated with HTD1801 1000 mg BID achieved HbA1c <7% and 29% achieved HbA1c <6.5%

Significant Reductions in Fasting Plasma Glucose and HOMA-IR with HTD1801 Treatment


- Significant improvements in fasting plasma glucose (FPG) were observed as early as Week 4 with HTD1801 in contrast to worsening/no change with placebo
- HOMA-IR was reduced significantly compared to placebo at Week 12 and reduced by 24% compared with baseline

Significant Reductions in LDL-C and Non-HDL-C with HTD1801 Treatment

 Significant dose-dependent improvements in LDL-C and non-HDL-C were observed as early as Week 4 with HTD1801 in contrast to worsening/no change with placebo

Significant Reductions in ALT, AST, and GGT with HTD1801 Treatment

 Significant improvements in ALT, AST, and GGT were observed as early as Week 4 with HTD1801 in contrast to worsening/no change with placebo

Incidence of TEAEs was Low and Events Were Generally Mild in Severity

Preferred Term, n (%)	Placebo (N= 38)	HTD1801 500 mg BID (N=37)	HTD1801 1000 mg BID (N=38)
Subjects with ≥1 TEAE	15 (39.5)	17 (45.9)	27 (71.1)
Hyperlipidemia	2 (5.3)	3 (8.1)	3 (7.9)
Sinus bradycardia	1 (2.6)	2 (5.4)	3 (7.9)
Proteinuria	1 (2.6)	0	3 (7.9)
Ventricular extrasystoles	1 (2.6)	0	3 (7.9)
Jpper respiratory tract nfection	1 (2.6)	2 (5.4)	2 (5.3)
Hyperuricemia	0	1 (2.7)	2 (5.3)
Constipation	0	1 (2.7)	2 (5.3)
Supraventricular extrasystoles	0	0	2 (5.3)
Hyponatremia	0	2 (5.4)	0
Urinary tract infection	0	2 (5.4)	0
Urinary tract infection	0	2 (5.4)	0

Treatment-emergent adverse events (TEAEs) occurring ≥2 patients

- The occurrence of hypoglycemia, nausea, and diarrhea was rare, with only one instance of each reported
- One SAE occurred during the study: an event of retinal hemorrhage in a patient randomized to HTD1801 500 mg BID deemed unlikely related to treatment

SUMMARY

- The primary endpoint was achieved with significant dosedependent reductions in HbA1c after 12 weeks of treatment with HTD1801
- Reductions in HbA1c were paralleled by significant improvements in FPG and HOMA-IR after treatment with HTD1801
- HTD1801 treatment resulted in improvements in lipids that were observed as early as Week 4 and sustained through the duration of treatment
- HTD1801 was found to be generally safe and well tolerated
- This proof-of-concept study supports HTD1801 as a novel oral treatment option for management of glycemic control
- These findings will be further evaluated in Phase 3 studies in patients with T2DM

Reference

Di Bisceglie AM, et al. Lipid Health Dis. 2020;19(1):1-10.
 Harrison SA, et al. Nat Commun. 2021;12(1):5503.

Author Affiliations

"Peking University People's Hospital, Bejing, China; "Nanjing First Hospital Nanjing, China; "The First Affiliated Hospital of Heart University of Science and Technology, Luoyang, China; "The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China; "Changde First People's Hospital, Changde, China; "Mafiliated Hospital of Jiangsu University, Zhenjiang, China; "The First Affiliated Hospital of Naryang, Medical College, Nanyang, China; "Affiliated Hospital of Yan'an University, Yan'an, China; "Nanjing, Medical University Hospital, Nanjing, China; "Jian'an Central Hospital, Jiana, China; "Jian'an Central Liancheng, China; "Nanjing, Angingin Hospital, Nanjing, China; "The Second Hospital of Jiiin University, Changchur, China; "Huizhou Central People's Hospital of Jiiin University, Changchur, China; "Huizhou Central People's Hospital, Huizhou, China; "Hijafital Enterapeutics, Inc., Shenzhen, China."

Contact Information HighTide Therapeutics: info@hightidetx.com